It comes, I think, from the formula
$$ \pi \cot(\pi z) = \frac{1}{z} + \sum_{k=1}^\infty \frac{2z}{z^2-k^2} = \frac{1}{z} + \sum_{k=1}^\infty \left( \frac{1}{k+z} - \frac{1}{k-z}\right) $$
It comes, I think, from the formula
$$ \pi \cot(\pi z) = \frac{1}{z} + \sum_{k=1}^\infty \frac{2z}{z^2-k^2} = \frac{1}{z} + \sum_{k=1}^\infty \left( \frac{1}{k+z} - \frac{1}{k-z}\right) $$