Let $m = 1+\dfrac{3}{n} \to |m^2-1| < \dfrac{1}{10} \to -\dfrac{1}{10} < m^2-1 < \dfrac{1}{10} \to \dfrac{9}{10} < m^2 < \dfrac{11}{10} \to \dfrac{3}{\sqrt{10}} < m < \dfrac{\sqrt{11}}{\sqrt{10}}$. Observe that $\forall n \geq 1 \to m = 1+\dfrac{3}{n} > \dfrac{3}{\sqrt{10}}$. And $m < \dfrac{\sqrt{11}}{\sqrt{10}} \to \dfrac{3}{n} < \dfrac{\sqrt{11}-\sqrt{10}}{\sqrt{10}}\to n > \dfrac{3\sqrt{10}}{\sqrt{11}-\sqrt{10}}=3\sqrt{110}+30\approx 61.5$. Thus $N = 62$ or higher.