If $$\displaystyle\lim_{x\to a}\frac{f^{(k)}}{g^{(k)}}$$ exists and $f^{(k-1})$, $g^{(k-1)}\to 0$ or $\pm\infty$, then the theorem guarantees that $$\displaystyle\lim_{x\to a}\frac{f^{(k-1)}}{g^{(k-1)}}$$ exists and is equal. Then, if $f^{(k-2})$, $g^{(k-2)}\to 0$ or $\pm\infty$, $$\displaystyle\lim_{x\to a}\frac{f^{(k-2)}}{g^{(k-2)}}$$ exists and is equal. Etc.